A Novel Cost-Efficient Wheelchair Training Roller for Persons with Disabilities in Economically Disadvantaged Settings: Easy Roller

Scheffers M.F.1; Buckley J.2; Bleakney A.3; Doolan F.4; Tuakli-Wosornu Y.5

1. Faculty of Medicine, Utrecht University; 2. Department of Mechanical Engineering, University of Delaware; 3. College of Applied Health Sciences, University of Illinois at Urbana-Champaign; 4. School of Medicine, Trinity College Dublin, University of Dublin; 5. Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University
Barriers to physical mobility in economically disadvantaged settings

4 tracks nationwide

Government support?

>5x monthly income1,2
To design a portable, affordable, and easily manufacturable training system with variable resistance for a variety of wheelchair athletes.
Current wheelchair training devices

Stationary training device, Accra, Ghana.

Bulky (49 lbs.)

Dynolight Rollers, UK.

Expensive (1147 USD)
<table>
<thead>
<tr>
<th>Priority</th>
<th>Constraint/Want</th>
<th>Description</th>
<th>Target Value/Metric</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Safety</td>
<td>Device can hold wheelchair & person</td>
<td>Holds 250lbs</td>
<td>Provided by sponsor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safe to get onto device</td>
<td><170 mm from ground</td>
<td>ASTM F3022-15®</td>
</tr>
<tr>
<td></td>
<td>Originality</td>
<td>Device cannot infringe on existing designs and patents</td>
<td>N/a</td>
<td>N/a</td>
</tr>
<tr>
<td>1</td>
<td>Affordability</td>
<td>Material cost</td>
<td><$250</td>
<td>Provided by Sponsor</td>
</tr>
<tr>
<td>2</td>
<td>Manufacturability</td>
<td>Design must be easily manufactured in bulk</td>
<td>Est. 20,000 units yearly</td>
<td>Motivation UK</td>
</tr>
<tr>
<td>3</td>
<td>Portability</td>
<td>Weight & dimensions of condensed device</td>
<td>50 lbs, 62 inches combined height + width + length</td>
<td>LuggagePros®</td>
</tr>
<tr>
<td>4</td>
<td>Usability</td>
<td>Ability required to engage in device usage</td>
<td>One person</td>
<td>Benchmark Reviews®</td>
</tr>
<tr>
<td>5</td>
<td>Durability</td>
<td>Units cannot rust and shall maintain usable</td>
<td>Min. 4 years w/o corrosion or fatigue failure or 2.7 million rotations</td>
<td>Sponsor Request</td>
</tr>
<tr>
<td>6</td>
<td>Compatibility</td>
<td>Device must coincide with common characteristics of racing wheelchairs</td>
<td>Front wheel diameter: 0.36-0.46m, Back wheel diameter: 0.61-0.69m</td>
<td>Journal of Rehabilitation Research and Development®</td>
</tr>
<tr>
<td>7</td>
<td>Resistance</td>
<td>Ability to change amount of force required to turn wheels</td>
<td>TBD</td>
<td>Provided by Sponsor</td>
</tr>
<tr>
<td>8</td>
<td>Time</td>
<td>Final prototype must be finished along with drawing package for manufacturing</td>
<td>12/15/2017</td>
<td>Course syllabus</td>
</tr>
</tbody>
</table>
Design goals

<table>
<thead>
<tr>
<th>Constraint/Want</th>
<th>Target Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affordability</td>
<td>Material cost <250 USD</td>
</tr>
<tr>
<td>Portability</td>
<td><50 lbs.</td>
</tr>
<tr>
<td></td>
<td><62 linear inches total^5</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>Est. 20,000 products yearly</td>
</tr>
<tr>
<td>Adjustability</td>
<td>Facilitate various athletes</td>
</tr>
</tbody>
</table>
Design process

Testing at Moss Rehab, PA, USA
Specifications

Material:
• 2x2x1/8” 6061 aluminum square tubing
• Conveyor belt rollers
• U and L brackets

Dimensions:
• 17 x 15 x 3,5”
What makes the easy roller successful?

Pre-fabricated components creatively combined

1. Aluminum frame
2. Raised feet
3. Conveyer belt rollers
4. Inertial weight
5. Variable resistance

The Easy Roller prototype
Final design

Full set up of the Easy Roller, Newark, DE
Results

Affordable
- $170 - 200 cost of goods
- Stock materials

Easy to manufacture
- Pre-fabricated components
- TBD further

Adjustable
- Resistance
- Moment of inertia

Durable
- Interchangeable stock materials
 - Withstand 260 lbs.
 - Industry-grade rollers
 - 2.7 million rotations

Portable
- Flat-pack design
 - 34 lbs
 - 42 linear inches
Results

<table>
<thead>
<tr>
<th>Constraint/Want</th>
<th>Target Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affordability</td>
<td>Material cost <250 USD</td>
<td>$170-$200</td>
</tr>
<tr>
<td>Portability</td>
<td><50 lbs.</td>
<td>34 lbs.</td>
</tr>
<tr>
<td></td>
<td><62 linear inches total5</td>
<td>42 linear inches total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flat pack design</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>Est. 20,000 products yearly</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-fabricated components</td>
</tr>
<tr>
<td>Adjustability</td>
<td>Facilitate various athletes</td>
<td>Resistance levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moment of inertia</td>
</tr>
<tr>
<td>Durability</td>
<td>Min. 4 years w/o corrosion or fatigue failure or 2.7 million rotations</td>
<td>Interchangeable stock materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Withstand 250 lbs.</td>
</tr>
</tbody>
</table>
Future directions

• Stabilization of the front part
• Ramp add-on feature
• User-friendly resistance adjustability & numbering
• Performance feedback
 o Accelerometer (speed and distance)
 o Save data connected to an application
• Testing by variety of athletes
• Failure testing & life span
Conclusion

Need to *enhance* the *training facilities* of athletes in socially disadvantaged settings

- Portable
- Affordable
- Easy to manufacture

➢ Variable resistance levels
Potential impact

4 tracks nationwide

Government support?

>5x monthly income1,2
References

Thank you

Dr. Yetsa Tuakli-Wosornu (Yale University)
Dr. Jenni Buckley (University of Delaware)
Raphael Botsyo & Maclean Atsu Dzidzienyo – Go Get Dem Wheelchair Racing Club
Adam Bleakney (University of Illinois)
MossRehab & Global Abilities (Pennsylvania, USA)
Chapter 126 Sports & Fitness (Connecticut USA)
Dr. Sarah Rooney
Dr. Rory Cooper
Biomedical & mechanical department – University of Delaware