The relation between performance measures in para-cycling classification research

Carla Nooijen, Anna Bjerkefors, Johanna Liljedahl, Rafael Muchaxo, Thomas Janssen, Luc van der Woude, Toni Arndt, Sonja de Groot
Para-cycling

- Limb deficiency (amputations)
- Muscle strength impairments
- Range of motion impairments
Cycling performance

- Able-bodied: large knowledgebase
- Para-cycling:
 - Small samples
 - Sedentary or inactive population, or addresses rehabilitation
 - Cycling \rightarrow muscle strength, balance, fitness, gross motor function
 - Elite para-cyclists different physiology from untrained individuals

Lai et al. 2017
Armstrong et al. 2019
Purpose:
To determine the association between the 20-second sprint test and time trial results in elite para-cyclists
- Handcyclists
- Bicyclists
20-second sprint tests

- Cyclus2, RBM Electronics
- Own bike
- 20 seconds – all out, from flying start - seated
- Peak power output (POpeak), mean power output (Pomean)
 Watt and Watt/kg
Time trial results

- Official UCI results from international competition were athletes performed 20-second sprint test
- Mean speed in km/h

<table>
<thead>
<tr>
<th>WORLD CUP</th>
<th>Time</th>
<th>Time</th>
<th>Time</th>
<th>Time</th>
<th>Speed</th>
<th>Difference</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2:00</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>50.838</td>
<td>1:05.606</td>
<td>2:07.137</td>
<td>3:02.646</td>
<td>+3.955</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.896</td>
<td>1:06.483</td>
<td>2:08.877</td>
<td>3:05.096</td>
<td>+6.405</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.063</td>
<td>1:07.847</td>
<td>2:08.377</td>
<td>3:05.577</td>
<td>+6.886</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.985</td>
<td>1:06.789</td>
<td>2:09.615</td>
<td>3:05.830</td>
<td>+7.139</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.748</td>
<td>1:07.171</td>
<td>2:07.896</td>
<td>3:05.892</td>
<td>+7.201</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.798</td>
<td>1:07.717</td>
<td>2:08.996</td>
<td>3:06.372</td>
<td>+7.681</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.087</td>
<td>1:06.257</td>
<td>2:10.390</td>
<td>3:06.787</td>
<td>+8.096</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.484</td>
<td>1:07.308</td>
<td>2:10.419</td>
<td>3:07.629</td>
<td>+8.938</td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Descriptives

<table>
<thead>
<tr>
<th></th>
<th>Para-cyclists</th>
<th>Handcyclists n=21 (6 women)</th>
<th>Bicyclists n=37 (8 women)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-second sprint test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POpeak Watt</td>
<td>432</td>
<td>253</td>
<td>643</td>
</tr>
<tr>
<td>POpeak Watt/kg</td>
<td>6.6</td>
<td>2.2</td>
<td>9.4</td>
</tr>
<tr>
<td>POmean Watt</td>
<td>349</td>
<td>203</td>
<td>459</td>
</tr>
<tr>
<td>POmean Watt/kg</td>
<td>5.2</td>
<td>1.9</td>
<td>7.1</td>
</tr>
<tr>
<td>Time trial speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>km/h</td>
<td>33.5</td>
<td>9.5</td>
<td>39.5</td>
</tr>
</tbody>
</table>
Results – handcyclists

Handcyclists: $\rho=0.81, p<0.01$
Results – bicyclists

Bicyclists: $\rho=0.57$, $p<0.01$
Discussion

What is surprising? High or moderate correlation?

• In able-bodied: sprint and endurance performance also moderate correlation. Martin et al. 2007, Faria et al. 2005

• Arm vs leg
 o Handcyclists: previously found high correlations between sprint power and aerobic power. Janssen et al. 1993
 o Time trial and aerodynamics
 o Other factors
What to use as a performance measure in classification research?

20-second sprint test:
Standardized, good indicator of biomechanical possibilities without being affected by factors that we do not want to include, such as aerobic capacity

Why not maximal exercise test?

Time trial results:
Available!!

But… weather, course, flat tires?

- Handcyclists
 Strong relation
- Bicyclists
 Moderate relation