Preserving shoulder health in wheelchair users: The role of wheelchair propulsion induced fatigue and capacity

Fransiska M. Bossuyt a, Ursina Arnet a, Ann Cools b and Michael L. Boninger c

a Swiss Paraplegic Research (CH) and Department of Health Sciences and Health Policy, University of Lucerne (CH)
b Department of Rehabilitation Sciences and Physiotherapy, University of Ghent (BE) and Department of Occupational and Physical Therapy and Institute of Sports Medicine, University of Copenhagen (DNK)
c Human Engineering Research Laboratories, Department of Veterans Affairs (USA), Department of Physical Medicine and Rehabilitation and Department of Rehabilitation Science and Technology, University of Pittsburgh (USA)
Objectives

Fatigue

1. To examine how wheelchair propulsion-induced fatigue effects neuromuscular activation and propulsion biomechanics
2. To determine persons susceptible to fatigue

Methods

Quasi-experimental study
Pre-test post-test design

<table>
<thead>
<tr>
<th>Study population</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34 wheelchair users</td>
<td>No pain that limits ability to propel</td>
</tr>
<tr>
<td>SCI at T2 or below</td>
<td>No history of upper limb fractures/dislocations causing symptoms</td>
</tr>
<tr>
<td>18 % females</td>
<td></td>
</tr>
<tr>
<td>51 ± 10 years of age</td>
<td></td>
</tr>
<tr>
<td>28 ± 12 years since injury</td>
<td></td>
</tr>
</tbody>
</table>
Methods

0

1h

2h

3h

4h

Ultrasound Exam

Preparation

Max test

Rest (12’)

Max test

Max test

Fatigue protocol

25 W

45 W

PASIPD questionnaire

25 W

45 W

Ultrasound Exam

Remove equipment

Clean-up

Introduction
Participant characteristics
Range of Motion
Methods: Dependent variables

2h

3h

4h

Fatigue protocol
Methods: Dependent variables

2h
- Max test
- Rest (12’)

3h
- Fatigue protocol

4h

Anaerobic work capacity:
15-m sprint

MVC

EMG:
- RMS and MPF
- EMG%MVC

Resultant force

Push angle

Statistical analysis: One way repeated measures ANOVAs, statistical parametric mapping (SPM), and two sample t-tests ($\alpha = 0.05$)
Results and discussion

→ 47% of the sample was identified as being susceptible to fatigue

* denotes significant difference (α = 0.05).
Results and discussion

78° -> 76°
Results and discussion

Complete lesion

Age at injury

Anaerobic capacity

MET = EMG% / MVC

Max push strength

Pushangle

Frmax
Limitations

❖ Fatigue protocol remains artificial and does not represent real-life situations

❖ No measures of aerobic capacity or the wheelchair and its setup
Conclusions and future perspectives

Fatiguing wheelchair propulsion → Compensation → Shoulder Health
- Increased muscular activation
- Shorter push angle

Predictor variables of susceptibility to fatigue
- Lesion characteristics and capacity

Interventions to improve resistance to fatigue and preserve shoulder health
- Wheelchair training, neuromuscular activation, aerobic capacity
- Focus on persons susceptible to fatigue

NEXT

Tendon appearance
Glenohumeral contact force
Training strategies: HIIT?
Acknowledgements

Dr. Ursina Arnet
Prof. Dr. MD. Michael L. Boninger
Prof. Dr. Ann Cools

Thank you for your attention!
Extra slides
Recruitment procedure

Persons in SwiSCI database contacted for the SwiSCI Survey 2017
 $n = 2379$

Persons contacted for the current study as they fulfilled part of the inclusion criteria available through the SwiSCI database
 $n = 551$

Refused consent
 $n = 102$

Signed consent but excluded
 $n = 20$

Non response
 $n = 379$

Eligible for all criteria and signed consent
 $n = 53$

Included in the current study
 $n = 50$
Table 1: Subject characteristics and capacity measures for entire sample and by group (non-fatigued vs fatigued).

<table>
<thead>
<tr>
<th></th>
<th>Total (n=34)</th>
<th>Non fatigued (n=18)</th>
<th>Fatigued (n=16)</th>
<th>p</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (% male)</td>
<td>82</td>
<td>78</td>
<td>88</td>
<td>0.458</td>
<td></td>
</tr>
<tr>
<td>Cause injury (% traumatic)</td>
<td>91</td>
<td>94</td>
<td>88</td>
<td>0.476</td>
<td></td>
</tr>
<tr>
<td>Completeness (% incomplete)</td>
<td>79</td>
<td>94</td>
<td>63</td>
<td>0.021</td>
<td>0.021</td>
</tr>
<tr>
<td>Lesion level (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.823</td>
<td></td>
</tr>
<tr>
<td>T2-T6</td>
<td>41</td>
<td>44</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7-T12</td>
<td>38</td>
<td>33</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1-L2</td>
<td>21</td>
<td>22</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>50.8 ± 9.7</td>
<td>50.6 ± 11.1</td>
<td>50.9 ± 8.3</td>
<td>0.924</td>
<td>[-7.24;6.59]</td>
</tr>
<tr>
<td>Height (m)</td>
<td>173.4 ± 7.7</td>
<td>171.7 ± 6.8</td>
<td>175.4 ± 8.5</td>
<td>0.172</td>
<td>[-8.97;1.67]</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>72.8 ± 13.0</td>
<td>69.0 ± 14.1</td>
<td>77.1 ± 9.2</td>
<td>0.059</td>
<td>[-16.54;0.32]</td>
</tr>
<tr>
<td>Weight Wheelchair (Kg)</td>
<td>14.5 ± 2.1</td>
<td>14.1 ± 2.3</td>
<td>15.0 ± 1.6 (n=14)</td>
<td>0.215</td>
<td>[-2.40; 0.56]</td>
</tr>
<tr>
<td>Time since injury (years)</td>
<td>27.8 ± 12.0</td>
<td>32.2 ± 12.6</td>
<td>22.9 ± 9.3</td>
<td>0.021</td>
<td>[1.49;17.16]</td>
</tr>
<tr>
<td>Age at injury (years)</td>
<td>22.9 ± 10.4</td>
<td>18.4 ± 8.4</td>
<td>28.0 ± 10.4</td>
<td>0.005</td>
<td>[-16.21;-3.09]</td>
</tr>
<tr>
<td>Total laps</td>
<td>29.6 ± 3.0</td>
<td>29.8 ± 4.7</td>
<td></td>
<td>0.898</td>
<td>[-2.90;2.55]</td>
</tr>
<tr>
<td>Maximum push strength (N)</td>
<td>183.7 ± 47.7</td>
<td>224.8 ± 42.8</td>
<td>224.8 ± 42.8</td>
<td>0.015</td>
<td>[-73.63;-8.63]</td>
</tr>
<tr>
<td>Anaerobic work capacity (W)</td>
<td>76.0 ± 23.8</td>
<td>101.6 ± 29.2</td>
<td></td>
<td>0.008</td>
<td>[-44.04;-7.04]</td>
</tr>
<tr>
<td>Activity levels (MET)</td>
<td>21.7 ± 11.6</td>
<td>18.2 ± 16.6</td>
<td></td>
<td>0.476</td>
<td>[-6.41;13.43]</td>
</tr>
</tbody>
</table>

NOTE. p-values (α = 0.05) and 95% confidence interval (95% CI) represent comparison of non-fatigued and fatigued group.