Moving towards evidence based classification in wheelchair rugby: classification of trunk impairment in relation to static sitting balance measures

Viola C. Altmann MD (1), Brenda E. Groen PhD (1) Noël L.W. Keijzers PhD (1), Anne L. Hart PT PhD (2), Yves C. Vanlandewijck PT PhD (3)

1 Sint Maartenskliniek, Nijmegen The Netherlands;
2 Northern Arizona University, Flagstaff Arizona, USA
3 Department of Rehabilitation Sciences, KU Leuven, Belgium
Classification

• **Aim**: to minimise the impact of permanent impairment of body functions on the outcome of competition\(^1\)
• Evidence based
• Sport specific

1. IPC position stand Tweedy SM, 2009
Wheelchair rugby classification

- Developed for athletes with complete cervical SCI
- Arm score / 2 + trunk score = athlete class
- Eligible class < 4.0
- 4 Athletes / 8.0 points on court
Changing athlete population

Athletes with SCI complete → incomplete
Athletes with impairments in all four limbs:
• Neuromuscular conditions
• Amputations
• Congenital limb defects
• Cerebral palsy
The revised trunk evaluation (2010)

- Minimum of 10 tests, arranged in an algorithm
- Failing tests determine the trunk score
- Maximum trunk score increased from 1.0 to 1.5
Evidence

- Adequate reliability (Kappa 0.75)¹
- Validity related to biomechanical impairment ²-⁵:
 - Static sitting balance
 - Dynamic sitting balance
 - Coordination

1. IPC Vista conference, Altmann, 2011
2. Chen et al. 2003,
3. Bernard et al. 1994
4. Curtis et al. 1995
5. Van Nes et al. 2008
Aim

• To determine the association between trunk score and static sitting balance

• Hypothesis: the higher the trunk score, the better the performance in static sitting balance tasks
Participants

• Wheelchair rugby and wheelchair basketball athletes (n = 37) with any kind of health condition leading to eligible biomechanical impairment
• Inclusion criteria
 – Minimum age 18 years
 – ≥ 1 year experience
 – No pressure sores

• Revised trunk score was assessed by an experienced classifier.
Sitting balance set up

- Sitting balance tasks only if sitting unsupported \(\geq 30 \) s
- Adjustable chair mounted on a force plate
- No support during tasks
- Measurement of CoP

Sitting balance tasks

Sitting still for 30 s.
• Eyes open, stable surface
• Eyes open, unstable surface
• Eyes closed, stable surface
• Eyes closed, unstable surface
Outcome measures

- ‘Sway Area’ (SA) = surface of ellipse [mm²]
- ‘Sway Velocity’ (SV) = average velocity of CoP [mm/s]
Statistical analysis

• Consistency of the data: intraclass correlation coefficient (ICC)
 ICC > 0.70 → effect of trunk class analysis

• Effect of trunk class on sitting balance:
 Kruskall Wallis for each condition.

• Bonferroni Post Hoc test

• $\alpha = 0.05$
Results - classification

• Trunk score according to IWRF classification:
 – 0 (n = 18)
 – 0.5 (n = 7)
 – 1.0 (n = 5)
 – 1.5 (n = 7)
Results - ICC static balance

• ICC unstable conditions > 0.70

<table>
<thead>
<tr>
<th></th>
<th>SA</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOSS</td>
<td>0.61</td>
<td>0.68</td>
</tr>
<tr>
<td>ECSS</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>EOUS</td>
<td>0.66</td>
<td>0.85</td>
</tr>
<tr>
<td>ECUS</td>
<td>0.94</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Results-trunk class and sitting balance

- Sway velocity (SV) was not significantly different between trunk scores.
- Sway area (SA) was significantly different between trunk scores for the eyes closed unstable surface condition $P = 0.019$.
Results - trunk class and sitting balance

- open stable
- closed stable
- open unstable
- closed unstable
Discussion - Sensation

<table>
<thead>
<tr>
<th>Trunk class</th>
<th>n</th>
<th>Age (y) mean (sd)</th>
<th>Sex M/F</th>
<th>Sport B/R/B+R</th>
<th>Impaired sensibility at the buttocks N/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>2</td>
<td>34.0 (22.6)</td>
<td>2/0</td>
<td>1/0/1</td>
<td>0/2</td>
</tr>
<tr>
<td>0.5</td>
<td>7</td>
<td>33.9 (11.6)</td>
<td>7/0</td>
<td>1/6/0</td>
<td>4/3</td>
</tr>
<tr>
<td>1.0</td>
<td>5</td>
<td>32.8 (12.2)</td>
<td>5/0</td>
<td>3/2/0</td>
<td>2/3</td>
</tr>
<tr>
<td>1.5</td>
<td>7</td>
<td>42.3 (12.6)</td>
<td>6/1</td>
<td>5/2/0</td>
<td>6/1</td>
</tr>
</tbody>
</table>

[^M = Male; F = Female; B = Wheelchair Basketball; R = Wheelchair Rugby; Y = Yes; N = No.]
Discussion - sensation

- Sway Area ECUS-EOUS [mm²]

- Sway Velocity ECUS-EOUS [mm/s]

Impaired Normal
Sensibility at the buttocks

*
Conclusion

• Tests for static sitting balance are discriminative for athletes with full trunk impairment vs. athletes with any trunk impairment
• Impairment of sensation is not an eligible impairment type for Paralympic sport
• Impairment of sensation is an important confounder for static sitting balance measures
• Impairment of sensation may be a confounder for other measures of biomechanical impairment
Many thanks to

- All athletes from the Netherlands and Belgium who volunteered