LOWER LEG PROSTHESIS FOR CROSS-COUNTRY SKIING CLASSICAL TECHNIQUE

Per Skoglund, Marie Lund Ohlsson, Jonas Danvind

Mid Sweden University, Linköping University
The Swedish Sports Organization for the Disabled
The Swedish Paralympic Committee
What is good?
ASSYMMETRIC MOVEMENT PATTERN
- UNILATERAL LEG AMPUTEE

• Reported in gait and running (Prince 1992, Burkett 2003)
 – Increased with running speed
• Affects joint and muscular loads
 – Performance
 – Efficiency - economy?
 – Risk of injuries
AIM OF CASE STUDY

1. To better understand the amputee-prosthesis integration - by investigating symmetry

2. Design of the prosthesis adapted for cross-country skiing classical technique
ÖSSUR VARI-FLEX WITH EVO IN RUBBER FOOT AND SKI BOOT
ANALYZED DATA

Kinematics

<table>
<thead>
<tr>
<th>Angles</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankle</td>
<td>Hip-toe along treadmill</td>
</tr>
<tr>
<td>Knee</td>
<td>Shoulder-wrist al. treadmill</td>
</tr>
<tr>
<td>Hip</td>
<td>Shoulder-wrist lateral</td>
</tr>
<tr>
<td>Elbow</td>
<td>Heel – ski</td>
</tr>
<tr>
<td>Shoulder</td>
<td>COM in frontal plane relative to hips</td>
</tr>
<tr>
<td>Pole-treadmill</td>
<td></td>
</tr>
<tr>
<td>Ski-treadmill</td>
<td></td>
</tr>
</tbody>
</table>

Kinetics

- Pole forces axial
- Pole forces al. treadmill
- Pole impulse al. treadmill
- Feet forces (normal forces)
- Feet COP forward/backward motion
- Feet COP lateral/medial motion

- Significant difference left and right (> +/- 1std)
KINETICS

B)

NO SIGNIFICANT DIFFERENCE
ANKLE ANGLE

![Graph showing the ankle angle over time with phases labeled as Swing phase, Gliding phase, and Push-off phase.]

- Left ankle
- Right ankle
- + std
- - std

Knee angle
Hip angle
Ankle angle
HIP ANGLE

Swing phase
Gliding phase
Push-off phase

Hip angle
Knee angle
Ankle angle

Time (s)

Hip angle (°)
PART 2: PRODUCT DEVELOPMENT PROCESS

1. Planning → Pre-study → Product specification → Generating koncepts
 → Building prototypes → Detailed engineering → Product

2. Evaluate/testing → Feedback → Compare to specification

3. Feedback → Compare to specification → Testing prototype → Testing FEM
PRODUCT SPECIFICATION

- AVOID EARLY TOE DOWN

• Use Össur VariFlex
• Durable
• Reliable
• Suited for all weather conditions
• Low weight
• Easy to use
• Simple construction
ITERATION 2 – BUILDING PROTOTYPES
FEEDBACK

• Complex design
 – Difficult to repair
 – Difficult to manufacture
• Expensive
• Reliable?
 – avoid electronic components
ITERATION
- BUILDING SIMPLIFIED PROTOTYPE
FUTURE
- BUILDING FUNCTIONAL PROTOTYPE

FIELD TESTING
Is this good?

Does this prosthesis enhance motion symmetry?

The process continues…
THANK YOU FOR YOUR ATTENTION!