Cross-Country Sit Skiing: prominence of pushing poles gesture

Stefano PASTORELLI Giulia LISCO Laura GASTALDI

Politecnico di Torino
Department of Mechanical and Aerospace Engineering

1-4 May 2013
Summary

- cross-country sit-sky
- tests
- subjects & materials
- biomechanical model
- results
- discussion
- conclusions
Double Poling in cross-country sit ski

Progression achieved by pushing symmetrically on two hand-held poles.

Pushing poles gesture (PPG) is similar to double poling (DP) technique adopted by standing cross-country skiers.
FIELD TESTS DURING COMPETITION

- outdoor video capture
 - environment conditions
 - unstructured field
 - weather conditions
- competition contest
 - marker-less analysis
 - not repeatable
- elite athletes
Tests

✓ video-recording of the push gesture during Paralympics competition
✓ marker-less motion analysis

1-km sprint race
(qualification semifinal and final)
rectilinear segment with 2% slope
2-D kinematic analysis

Research financially supported by
Research approved and supported by International Paralympic Committee

1-4 May 2013
Subjects & Materials

VIDEO CAPTURE SYSTEM:

✓ **Cameras**: Basler Scout scA640-120fc
 - 120 fps at full resolution (659x490 pixel)
 - 1/4" CCD sensor color
 - FireWire interface
 - Synchronization via external trigger signal
 - Power supply over FireWire cable

✓ **Lents**: Pentax H6Z810
 - Manual Zoom
 - Focal length 8-48 mm
 - Iris range F1.0-22

✓ **PC Laptop** Celsius Mobile H270

✓ **SW** Simi Motion3D - 3D Motion Analysis System
Subjects & Materials

VIDEO CAPTURE SYSTEM:

✓ **Cameras**: Basler Scout scA640-120fc
 120 fps at full resolution (659x490 pixel)
 1/4" CCD sensor color
 FireWire interface
 Synchronization via external trigger signal
 Power supply over FireWire cable

✓ **Lenses**: Pentax H6Z810
 Manual Zoom
 Focal length 8-48 mm
 Iris range F1.0-22

✓ **PC Laptop** Celsius Mobile H270

✓ **SW** Simi Motion3D - 3D Motion Analysis System

PARTICIPANTS

<table>
<thead>
<tr>
<th></th>
<th>women</th>
<th>n. athletes</th>
<th>%</th>
<th>age</th>
<th>s.d</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW 10</td>
<td>4</td>
<td>27%</td>
<td>39,0</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>LW10.5</td>
<td>1</td>
<td>7%</td>
<td>24,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LW 11</td>
<td>3</td>
<td>20%</td>
<td>36,3</td>
<td>6,4</td>
<td></td>
</tr>
<tr>
<td>LW 11.5</td>
<td>2</td>
<td>13%</td>
<td>31,0</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>LW 12</td>
<td>5</td>
<td>33%</td>
<td>32,6</td>
<td>12,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>men</th>
<th>n. athletes</th>
<th>%</th>
<th>age</th>
<th>s.d</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW 10</td>
<td>3</td>
<td>9%</td>
<td>42,0</td>
<td>4,4</td>
<td></td>
</tr>
<tr>
<td>LW10.5</td>
<td>2</td>
<td>6%</td>
<td>28,0</td>
<td>5,7</td>
<td></td>
</tr>
<tr>
<td>LW 11</td>
<td>10</td>
<td>29%</td>
<td>40,8</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>LW 11.5</td>
<td>5</td>
<td>14%</td>
<td>38,2</td>
<td>9,1</td>
<td></td>
</tr>
<tr>
<td>LW 12</td>
<td>15</td>
<td>43%</td>
<td>34,1</td>
<td>9,2</td>
<td></td>
</tr>
</tbody>
</table>

1-4 May 2013
seven anatomical points, (head temple, shoulder, elbow, wrist, hip, knee and ankle left joints)
seven anatomical points, (head temple, shoulder, elbow, wrist, hip, knee and ankle left joints)

dfour technical additional points: (three to identify pole and one on sled)
seven anatomical points, (head temple, shoulder, elbow, wrist, hip, knee and ankle left joints)

four technical additional points: (three to identify pole and one on sledge)

angle convention
Results

PPG cycle CC sit-skiers

PP Poling Phase
maximum body and arm extension
(maximum wrist ground elevation) -
maximum sledge velocity

TP Transition Phase
maximum sledge velocity - maximum elbow
extension

RP Recovery Phase
maximum elbow extension - maximum
body and arm extension

a) stick diagram with respect world
reference frame; b) sledge velocity; c)
elbow angle; d) wrist vertical ground
elevation; e) pole angle; f) shoulder angle;
g) trunk angle.
Results

LW10 athlete
LW11 athlete
LW12 athlete (bilateral amputee)
LW12 athlete (monolateral amputee)

a) stick diagram; b) wrist, elbow and shoulder trajectories
SLEDGE VELOCITY

Discussion

SLEDGE VELOCITY

deceleration during the PP plateau at the end of the PP

snow-pole contact

non effective pole pushing angle

85% women have this trend

87.5% men have this trend
Discussion

Inertial effect
acceleration early stage of PP
with no pole-snow contact
Discussion

Forearm kinematics

\[
\begin{align*}
\vec{p}_{CMf} &= \vec{p}_E + f \cdot \left[\vec{p}_W - \vec{p}_E \right] \\
\vec{v}_{CMf} &= \vec{v}_E + f \cdot \left[\vec{w}_f \times \left(\vec{p}_W - \vec{p}_E \right) \right] \\
\vec{a}_{CMf} &= \vec{a}_E + f \cdot \left[\vec{w}_f \times \left(\vec{p}_W - \vec{p}_E \right) \right] + f \cdot \left[\vec{w}_f \times \left(\vec{w}_f \times \left(\vec{p}_W - \vec{p}_E \right) \right) \right]
\end{align*}
\]

Upperarm kinematics

\[
\begin{align*}
\vec{p}_{CMu} &= \vec{p}_S + u \cdot \left(\vec{p}_E - \vec{p}_S \right) \\
\vec{v}_{CMu} &= \vec{v}_S + u \cdot \left[\vec{w}_u \times \left(\vec{p}_E - \vec{p}_S \right) \right] \\
\vec{a}_{CMu} &= \vec{a}_S + u \cdot \left[\vec{w}_u \times \left(\vec{p}_E - \vec{p}_S \right) \right] + u \cdot \left[\vec{w}_u \times \left(\vec{w}_u \times \left(\vec{p}_E - \vec{p}_S \right) \right) \right]
\end{align*}
\]

Masses

\[
\begin{align*}
m_u &= 0.022 \cdot m_t + \left(\frac{4.76}{g} \right) \\
m_f &= 0.013 \cdot m_t + \left(\frac{2.41}{g} \right) \\
m_a &= m_f + m_u \\
r_u &= \frac{m_u}{m_a} \quad r_f = \frac{m_f}{m_a}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_S)</td>
<td>Position vector of Sh joint</td>
</tr>
<tr>
<td>(p_E)</td>
<td>Position vector of El joint</td>
</tr>
<tr>
<td>(p_W)</td>
<td>Position vector of Wr joint</td>
</tr>
<tr>
<td>(p_{CMu})</td>
<td>Position vector of CM(_u) joint</td>
</tr>
<tr>
<td>(p_{CMf})</td>
<td>Position vector of CM(_f) joint</td>
</tr>
<tr>
<td>(v_S)</td>
<td>Velocity vector of Sh joint</td>
</tr>
<tr>
<td>(v_E)</td>
<td>Velocity vector of El joint</td>
</tr>
<tr>
<td>(v_{CMu})</td>
<td>Velocity vector of CM(_u) joint</td>
</tr>
<tr>
<td>(v_{CMf})</td>
<td>Velocity vector of CM(_f) joint</td>
</tr>
<tr>
<td>(a_S)</td>
<td>Acceleration vector of Sh joint</td>
</tr>
<tr>
<td>(a_E)</td>
<td>Acceleration vector of El joint</td>
</tr>
<tr>
<td>(a_{CMu})</td>
<td>Acceleration vector of CM(_u) joint</td>
</tr>
<tr>
<td>(a_{CMf})</td>
<td>Acceleration vector of CM(_f) joint</td>
</tr>
<tr>
<td>(w_f)</td>
<td>Angular velocity of forearm link</td>
</tr>
<tr>
<td>(w_u)</td>
<td>Angular velocity of upper-arm link</td>
</tr>
<tr>
<td>(\dot{\omega})</td>
<td>Angular acceleration of forearm link</td>
</tr>
<tr>
<td>(\ddot{\omega})</td>
<td>Angular acceleration of upper-arm link</td>
</tr>
</tbody>
</table>
Discussion

\[\vec{f}_i = \frac{\vec{F}_i}{m_a} = \left[(r_u \cdot \vec{a}_{CMu}) + (r_f \cdot \vec{a}_{CMf}) \right] \cdot \hat{i} \]

\[f_{i_x} = - \left[(r_u \cdot \vec{a}_{CMu}) + (r_f \cdot \vec{a}_{CMf}) \right] \cdot \hat{i} \]
POLE ANGLE
POLE ANGLE
POLE LENGTH

<table>
<thead>
<tr>
<th>CODEC ATLETA</th>
<th>BASTONCINO</th>
<th>H SPALLA</th>
<th>H ATLETA</th>
<th>H SLITTA</th>
<th>B/H</th>
<th>∆h</th>
</tr>
</thead>
<tbody>
<tr>
<td>W01</td>
<td>105</td>
<td>76</td>
<td>94</td>
<td>15</td>
<td>1.38</td>
<td>11</td>
</tr>
<tr>
<td>W02</td>
<td>99</td>
<td>77</td>
<td>92</td>
<td>18</td>
<td>1.07</td>
<td>7</td>
</tr>
<tr>
<td>W03</td>
<td>103</td>
<td>86</td>
<td>108</td>
<td>22</td>
<td>0.95</td>
<td>-5</td>
</tr>
<tr>
<td>W04</td>
<td>122</td>
<td>94</td>
<td>116</td>
<td>31</td>
<td>1.05</td>
<td>6</td>
</tr>
<tr>
<td>W05</td>
<td>94</td>
<td>74</td>
<td>88</td>
<td>10</td>
<td>1.06</td>
<td>6</td>
</tr>
<tr>
<td>W06</td>
<td>95</td>
<td>77</td>
<td>93</td>
<td>23</td>
<td>1.02</td>
<td>2</td>
</tr>
<tr>
<td>W07</td>
<td>129</td>
<td>103</td>
<td>123</td>
<td>50</td>
<td>1.04</td>
<td>6</td>
</tr>
<tr>
<td>W08</td>
<td>160</td>
<td>127</td>
<td>149</td>
<td>47</td>
<td>1.07</td>
<td>11</td>
</tr>
<tr>
<td>W09</td>
<td>104</td>
<td>88</td>
<td>110</td>
<td>35</td>
<td>0.94</td>
<td>-6</td>
</tr>
<tr>
<td>W10</td>
<td>119</td>
<td>99</td>
<td>119</td>
<td>38</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>W11</td>
<td>93</td>
<td>77</td>
<td>95</td>
<td>21</td>
<td>0.97</td>
<td>-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODEC ATLETA</th>
<th>BASTONCINO</th>
<th>H SPALLA</th>
<th>H ATLETA</th>
<th>H SLITTA</th>
<th>B/H</th>
<th>∆h</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>136</td>
<td>103</td>
<td>133</td>
<td>34</td>
<td>1.02</td>
<td>3</td>
</tr>
<tr>
<td>M02</td>
<td>133</td>
<td>106</td>
<td>127</td>
<td>30</td>
<td>1.04</td>
<td>6</td>
</tr>
<tr>
<td>M03</td>
<td>145</td>
<td>108</td>
<td>128</td>
<td>32</td>
<td>1.34</td>
<td>17</td>
</tr>
<tr>
<td>M04</td>
<td>120</td>
<td>103</td>
<td>113</td>
<td>32</td>
<td>1.06</td>
<td>7</td>
</tr>
<tr>
<td>M05</td>
<td>104</td>
<td>94</td>
<td>110</td>
<td>36</td>
<td>0.89</td>
<td>-6</td>
</tr>
<tr>
<td>M06</td>
<td>129</td>
<td>102</td>
<td>112</td>
<td>33</td>
<td>1.15</td>
<td>17</td>
</tr>
<tr>
<td>M07</td>
<td>116</td>
<td>97</td>
<td>113</td>
<td>34</td>
<td>1.19</td>
<td>3</td>
</tr>
<tr>
<td>M08</td>
<td>150</td>
<td>114</td>
<td>137</td>
<td>25</td>
<td>1.09</td>
<td>13</td>
</tr>
<tr>
<td>M09</td>
<td>126</td>
<td>110</td>
<td>135</td>
<td>126</td>
<td>0.93</td>
<td>-9</td>
</tr>
<tr>
<td>M10</td>
<td>111</td>
<td>91</td>
<td>102</td>
<td>27</td>
<td>1.21</td>
<td>9</td>
</tr>
<tr>
<td>M11</td>
<td>112</td>
<td>96</td>
<td>110</td>
<td>33</td>
<td>1.16</td>
<td>2</td>
</tr>
<tr>
<td>M12</td>
<td>160</td>
<td>118</td>
<td>148</td>
<td>38</td>
<td>1.35</td>
<td>12</td>
</tr>
<tr>
<td>M13</td>
<td>151</td>
<td>108</td>
<td>135</td>
<td>39</td>
<td>1.11</td>
<td>16</td>
</tr>
</tbody>
</table>
Conclusions

• check the feasibility of the motion capture during a contest

• velocity:
 most of the athletes present some similar features; residual motor potential influences shape and duration of the deceleration
 more performing athletes reach maximum sledge velocity when the arm is in a posterior position respect the trunk, increasing PP
 a “kneeling” position allows a positive gradient of velocity during PP
 arm inertia play an important role in propulsion

• pole
 ratio pole/height on sledge increases as increases the seat angle respect the vertical plane. In general with curled legs ratio < 1.
 LW 10 class pole angles in PP are heterogeneous, while for LW 11 and LW12 angles are more homogeneous, even if there are some difference between man and women
Thank you!