



DE HAAGSE





university of groningen

## **Effect of holding a racket** on propulsion technique of wheelchair tennis players

Sonja de Groot

Femke Bos Jorine Koopman Aldo Hoekstra **Riemer Vegter** 



Introduction



# Wheelchair tennis vs. other wheelchair sports: -> different propulsion



Optimize propulsion in wheelchair tennis -> important to study the effect of holding a racket on propulsion technique







Goosey-Tolfrey & Moss (2005):

Maximum velocity was reduced during the racket condition Reduction in achieved velocity during the first three pushes

-> ineffective propulsion technique while holding a tennis racket?



#### Purpose

To investigate possible differences in propulsion technique between propelling the wheelchair with and without a racket in the hand.







## Participants: 8 experienced wheelchair tennis players

| Personal characteristics     |             |   |
|------------------------------|-------------|---|
| Men/Women (N)                | 4/4         |   |
| Age (years)                  | 23.0 (6.4)  |   |
| Body mass (kg)               | 63.4 (15.2) |   |
| Height (m)                   | 1.72 (0.09) |   |
| Disability                   |             |   |
| Paraplegia                   | 3           |   |
| Spina Bifida                 | 2           |   |
| Short femur, hip deviation   | 1           |   |
| Hip dysplasia                | 1           |   |
| Spastic legs                 | 1           |   |
| Wheelchair tennis level      |             | e |
| International youth / adults | 5/3         |   |









#### Design

3 Submaximal exercise tests and 6 sprints on a wheelchair ergometer

## Submaximal

- 1) 1.5 m/s on 0.15 W/kg without racket
- 2) 1.5 m/s on 0.15 W/kg with racket
- 3) 1.5 m/s on 0.25 W/kg with racket

## Sprint

1-3) <u>With</u> racket at 0.25 W/kg4-6) <u>Without</u> racket at 0.25 W/kg









#### **Data analysis**

#### **Propulsion technique out of torque and velocity signals**









#### **Statistics**

Racket hand vs. non-racket hand during blocks with racket:

- Repeated measures ANOVA
- 2 within factors:

-racket vs. non-racket hand;

-exercise blocks 0.15 and 0.25 W/kg



Same hand, with and without racket during the 0.15 W/kg blocks:

- paired sample t-test









| Propulsion technique   | Racket side vs. non-racket side |
|------------------------|---------------------------------|
| Push frequency         | =                               |
| Push time              | $\checkmark$                    |
| Power loss before push | $\uparrow$                      |
| Power loss after push  | $\uparrow$                      |
| POpeak during push     | $\uparrow$                      |
| POmean during push     | $\uparrow$                      |
| Overall mean speed     | $\checkmark$                    |

- Same hand compared when propelling with and without racket: similar significant differences, except for mean overall speed.
- 5s Sprint tests with and without racket showed also similar results















#### How to avoid high power loss when coupling the hand/racket to the rim?



Change in grip of the racket?

- Shape
- Material



Change in hand rim?







#### **Injuries:**

Ineffectiveness in propulsion technique (higher peak forces at same workload) caused by the racket might be related to injuries of the upper extremity.



Future studies:

- Monitoring upper-extremity injuries in wheelchair athletes
- Evaluate load on the shoulder with musculoskeletal modelling



**Discussion** 



#### Limitations:

- Stationary wheelchair ergometer
- Steady-state wheelchair propulsion, e.g. no braking, maneuvering









- Propelling the wheelchair while holding a racket has negative effects on the propulsion technique.
- On the long term the ineffectiveness in propulsion technique caused by the racket might be related to injuries of the upper extremity, since the racket arm has to endure higher peak forces at the same workload compared to the free hand.



## **Thank you for your attention!**

