Mass centre speed fluctuations of single arm amputee front crawl swimmers at sprint and distance pace

Conor Osborough and Carl Payton
Manchester Metropolitan University, UK
Introduction

- To swim effectively, swimmers must coordinate complex body movements to maximise propulsion and minimise resistance (drag).
- Propulsion and resistance will both fluctuate within the stroke cycle (but not easily measured).
- The resulting intra-cyclic speed (ICS) fluctuations can be assessed using, e.g., a velocity meter or 3-D motion analysis.

Taken from Payton and Wilcox (2006)
Introduction

• At or below 1.1 m·s⁻¹, single arm amputees can use their affected-arm to generate propulsion and increase intra-cyclic speed.
• Above 1.2 m·s⁻¹, single-arm amputees might not be able to rotate their affected-arm fast enough to generate propulsion.

PURPOSE
To determine the influence of the backward speed of the hand (unaffected-limb) and stump (affected-limb) on ICS and whether ICS fluctuations differ between sprint and distance pace.

Taken from Lecrivain et al. (2008)
Methods

Participants

• Ten (2 ♂, 8 ♀) highly-trained swimmers (16.8 ± 3.3 yrs; 1.68 ± 0.09 m; 63.9 ± 14.2 kg; 50 m PB: 33.1 ± 3.1 s).

• Elbow level single-arm amputees.

• IPC S9 class for front crawl.

Trials

• Two 25 m front crawl trials.

• One at 50 m pace, one at 400 m pace.

• No breathing within a 10 m test section.
Methods

Data Collection

• Calibrated performance volume.
• Two above-water and four below-water video cameras (50 Hz).

Data Processing

• One complete stroke cycle.
• Thirteen-segment full body model.
• Manually digitised 18 landmarks to obtain 3-D coordinates.
Data Processing

Individualised body segment parameters determined using Elliptical Zone Method.

Photographs of participant’s frontal and sagittal planes for use with the “eZone” software programme.
Methods

Dependent Variables
- Mass centre speed.
- Intra-cyclic speed fluctuation
- Backward speed of hand and stump.

Data Analysis
- Means and standard deviations.
- Inter-individual analysis.
- ANOVA ($p < .05$) to compare each dependent variable (between pace and between arm).
Backward speed of hand and stump

Fig 1. Mean (± SD) backward speed of the hand (unaffected-arm) and stump (affected-arm) during the Pull and Push phases, at 50 m and 400 m pace.

a Denotes significant differences ($p < .01$) between phases.

b Denotes significant difference ($p < .05$) between 50 m and 400 m pace.
Fig 2. Mean (± SD) mass centre speed, expressed as a percentage of mean swimming speed at the end of the Glide, Pull and Push phases of the unaffected- and affected-arm at 50 m and 400 m pace.

a Denotes significant differences ($p < .01$) between phases.
b Denotes significant difference ($p < .05$) between 50 m and 400 m pace.
Intra-cyclic speed fluctuation

ICS Fluctuation

• ICS changed more during pull of unaffected arm compared to pull of affected arm.

• ICS Fluctuation: \(\frac{(\text{max-min})}{\text{mean}} \times 100\% \)
 19.3% (400 m Pace)
 19.7% (50 m Pace)

Fig 3. Intra-cyclic speed fluctuations, as a percentage of mean swimming speed, for eight female (♀) and two male (♂) arm amputee front crawl swimmers swimming at 50 m and 400 m pace. G.M. = Group Mean (± SD).

\(^a\) Denotes significant difference \((p < .01)\) between affected- and unaffected-side.
Summary and Conclusion

- Amputees’ mean intra-cyclic speed fluctuation (~19%) did not differ between sprint and distance pace.
- Amputees were effective at increasing their swimming speed with their unaffected-arm, but not so with their affected-arm.
- The final backward push of the hand should be executed at high speed to successfully generate propulsion.
- The affected-arm appears not be able to generate effective propulsion, particularly when swimming at high speed.
Thank you for your attention

Acknowledgements

Prof. Dan Daly, Prof. Ross Sanders, Dr. Casey Lee, Miss Clare Dadswell, British Para-Swimming