International Paralympic Committee

Return to play guidelines following acute illness

Prof Martin Schwellnus

Presentation Outline

- 1. How common is acute illness in Summer Paralympic athletes?
- 2. What are the common systems affected by acute illness in Paralympic athletes?
- 3. What are the consequences and possible medical complications of acute illness during exercise?
- 4. What are the guidelines for return to play (RTP) during (and after) acute illness?

How common is illness at Summer Paralympic Games?

Original article

Illness and injury in athletes during the competition period at the London 2012 Paralympic Games: development and implementation of a web-based surveillance system (WEB-IISS) for team medical staff

Wayne Derman,^{1,2} Martin Schwellnus,^{1,2} Esme Jordaan,³ Cheri A Blauwet,^{4,5} Carolyn Emery,^{6,7} Pia Pit-Grosheide,⁵ Norma-Angelica Patino Marques,^{5,8} Oriol Martinez-Ferrer,^{5,9} Jaap Stomphorst,^{5,10} Peter Van de Vliet,^{5,11} Nick Webborn,¹² Stuart E Willick^{5,13}

Original article

Factors associated with illness in athletes participating in the London 2012 Paralympic Games: a prospective cohort study involving 49 910 athlete-days

Martin Schwellnus,^{1,2} Wayne Derman,^{1,2} Esme Jordaan,³ Cheri A Blauwet,^{4,5} Carolyn Emery,^{6,7} Pia Pit-Grosheide,⁵ Norma-Angelica Patino Marques,^{8,5} Oriol Martinez-Ferrer,^{5,9} Jaap Stomphorst,^{10,5} Peter Van de Vliet,^{5,11} Nick Webborn,¹² Stuart E Willick,^{5,13}

Incidence of illness

14.2% athletes13.2 per 1000 athlete days1 per 75 athlete days

Team size	New illness frequency
25	One athlete every 3 rd day
38	One athlete every 2 nd day
75	One athlete every day
150	Two athletes every day

Summer Olympic Games: 7% Illness Summer Paralympic Games:

14.2% Illness

Illness by system affected (per 1000 player days)

BMJ

Effects of acute infections on exercise performance

System	Influence
Musculoskeletal	Muscle wasting (decrease in protein content)
	 Decrease in muscle strength (isometric and isotonic)
	Decrease in muscle endurance
	Mitochondrial abnormalities
Cardiovascular	Decrease in aerobic exercise capacity
	 Increase in heart rate at submaximal exercise intensity
	 Decrease in stroke volume → Decrease in cardiac output
Neurological	Impairs motor coordination
	Decreased neuromuscular transmission
Metabolic	Catabolism of muscle protein
	 Increased uptake of amino acids in the liver and other organs
	Decrease in muscle enzyme activity
	 Decreased levels of serum fatty acids
	 Decreased mobilisation of fatty acids from the fat deports
	 Increase in the proportion of energy arriving from CHO metabolism
	 Higher lactate levels at all stages during a graded exercise test
	 Increase in glucagon, growth hormone and cortisol
	Hyper-insulinaemia
	Decrease in oxygen uptake
	Inability to maintain euglycaemia

Dick N, Diehl, J; Sports Health, 6(3), 2015 Van Tonder, A: MPhil Sport and Exercise Medicine dissertation 2015 Acute <u>self reported</u> illness negatively affects exercise performance (Did not finish rate - % athletes started)

Clinical point

- Athletes with any symptoms of an acute precompetition illness had a 1.6 X greater chance of not completing the event
- 2. Athletes with symptoms of an acute <u>systemic</u> precompetition illness had a 1.9 X greater chance of not completing the event

Physician diagnosed acute systemic illness affects exercise performance (Did not finish rate - % athletes started)

Clinical point

- Athletes with diagnosed <u>systemic illness > 24 hours</u> before the event had a 5 X greater chance of not completing the event
- Athletes with diagnosed <u>systemic illness < 24 hours</u> before the even had a 7 X greater chance of not completing the event

*: Significantly different from CON group Gordon L, Schwellnus M, et al: (in preparation)

Potential medical complications of an acute infective illness during exercise

System	Complication
Cardiovascular	Viral myocarditis
	Myopericarditis
	Dysrhythmias
	Sudden cardiac death
Neuromuscular	Rhabdomyolysis with or without acute renal failure
	Joint, ligament and tendon injuries due to impaired motor
	coordination, reduced muscle strength and endurance
Respiratory system	Bronchial hyper-reactivity
Others	Affects on fluid homeostasis (ADH production reduced in
	fever, fluid loss with fever)
	Post-viral fatigue syndrome
	Increased duration and severity of symptoms of illness
	Ruptured spleen (IM)
	Heatstroke
	Disease transmission to other athletes

Dick N, Diehl, J; Sports Health, 6(3), 2015 Van Tonder, A: MPhil Sport and Exercise Medicine dissertation 2015

Clinical point

Athletes with any pre-event acute illness, who chose to start the event, had a 2.3 X greater risk of developing a medical complication during the event

*: Significantly different from control

Gordon L, Schwellnus M, et al: (in preparation)

What are the return to play guidelines for athletes with acute illness? Historical approach

- 1. "Neck check': First described in 1993 (Eichner)
- 2. Clinical tool: Based on an abbreviated medical history and findings of a clinical examination
- 3. Main criteria
 - Symptoms above the 'neck':
 - Limited return to sport (submaximal exercise and re-evaluate)
 - Symptoms below the neck or systemic symptoms: No sport and re-evaluate
- Never been systematically studied or validated

NUMBER

SPORTS SCIENCE EXCHANGE

CONTAGIOUS INFECTIONS IN COMPETITIVE SPORTS

E. Randy Eichner, M.D. Professor of Medicine University of Oklahoma Health Sciences Center Oklahoma City, Oklahoma Member, GSSI Sports Medicine Review Board

KEY POINTS

- Exercise can change blood levels, proportions, and functions of white blood cells, especially natural killer cells. These changes are generally modest and brief, but they may have clinical importance.
- Whether exercise helps or harms immunity or increases the chance of acquiring upper respiratory tract infection (URTI) or other infections is still debated, but may depend on the stress level involved.
- The risk today of contracting HIV through competitive sports is next to zero, although a theoretical risk exists for wrestling and certain other "Mood sports."
- 4. Prevention of infections among athletes hinges on common sense, good hygiene, prodent immunization, wise training, and "universal precastions."
- 5. A practical gauge for the sthlets with URTI is the "neck check." wherein symptoms below the neck should preclude strenuous exercise, whereas those above the nack may be less serions.

2016 Modified StARRT Framework for RTP Following Acute Illness (Modified from Shrier I, BJSM 2015)

Accurate diagnosis and General Athlete Health Risk

Organ System Stresses

Return-to-Play Decision

Step 1: Make an accurate diagnosis!!! What is the causes of the acute respiratory tract illness (RTI) in athletes?

- a. Infective (viral, bacterial, fungal, other)
- b. Allergies
- c. Physical factors related to increased air movement during exercise

(cold, dry air, increased air turbulence, mouth-breathing, and inhaled physical or chemical irritants)

d. Other diseases

Respiratory tract symptoms in ENDURANCE ATHLETES – A REVIEW OF CAUSES AND CONSEQUENCES

MP Schwellnus, *MB BCh, MSc (Med) Sports Science, MD (Sports and Exercise Medicine), FACSM, FFIMS*

M Lichaba, MB ChB, MPhil (Sports Medicine)

EW Derman, MB ChB, PhD (Sports and Exercise Medicine), FACSM, FFIMS

UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, International Olympic Committee Research Centre, Cape Town, South Africa and more specifically the possible mechanisms that may lead to the development of RTS. These symptoms can occur at various stages of training and competition: the pre-competition period (during the preparation training period), during the competition (intra-competition), or the post-competition recovery period (from immediately after the finish up to 2-6 weeks later).

Terminology and definitions

Endurance athletes can present with RTS ranging from 'blocked nose', 'runny nose', sore throat, swollen

Schwellnus M, et al; Current Allergy & Clinical Immunology, June 2010; 23 (2)

Step 2: Assessment of Health Risk

Risk of medical complications of an acute infective illness during exercise – depends on accurate diagnosis!

System	Complication
Cardiovascular	Viral myocarditis
	Myopericarditis
	Dysrhythmias
	Sudden cardiac death
Neuromuscular	Rhabdomyolysis with or without acute renal failure
	Joint, ligament and tendon injuries due to impaired motor
	coordination, reduced muscle strength and endurance
Respiratory system	Bronchial hyper-reactivity
Others	Affects on fluid homeostasis (ADH production reduced in
	fever, fluid loss with fever)
	Post-viral fatigue syndrome
	Increased duration and severity of symptoms of illness
	Ruptured spleen (IM)
	Heatstroke
	Disease transmission to other athletes

Van Tonder, A: MPhil Sport and Exercise Medicine dissertation 2015

Step 2: Assessment of Health Risk (Diagnosed acute illness)

Patient Demographics (e.g. age, sex)

Symptoms (e.g. systemic, fever, myalgia, Arthralgia, cough, tachycardia, sweating)

Personal Medical History (e.g. recurrent illness, systemic history, underlying chronic disease e.g. diabetes, medication use

Signs (Physical Exam) (e.g. pyrexia, HR, cardiovascular, respiratory, other systems)

Lab Tests (e.g. Activity markers e.g. CRP, cultures, serology, Troponins)

Special Tests (e.g. normal resting ECG, ? Others)

Return-to-Play Decision

Step 2: Assessment of Activity Risk on Organ

Systems (depends on the diagnosis of the acute illness)

Type of Sport (e.g. intensity, duration, single player vs. team player, contact vs. non-contact)

Environmental conditions (e.g. temp, *humidity, altitude, pollution, allergens)*

Competitive Level (e.g. recreational,

Ability to Withdraw / Replace (e.g. development of symptoms)

Functional Tests (e.g. normal submax exercise test (HR, thermoregulation), *normal muscle strength / endurance)*

Psychological Readiness

Return-to-Play Decision

Summary

- How common is illness? (vs. injury) As common as injury
- 2. Type of illness and causes? Respiratory > 50%, ? mostly infections and allergies
- 3. Potential complications during exercise:
 - Effects on performance Reduced (number of mechanisms)
 - Medical complications Higher rate / potentially life threatening (myocarditis, heat stroke, renal)

4. Return to play

- Step 1: Accurate diagnosis
- Step 2: Determine athlete health risk (NB systemic signs and symptoms, activity markers, ECG) (need more science)
- Step 3: Determine activity risk (organ systems at risk during activity) (suggest gradual return by using special performance tests) (need more science)
- Step 4: Determine risk tolerance

Paralympic.org

Thank you for your attention