International Paralympic Committee

Unique Considerations – the Female Paralympic Athlete

Cheri Blauwet, MD 06 September 2016

Overview

For most clinical topics – minimal variance amongst the needs of Olympic and Paralympic Female Athletes

For some, however, significant differences exist

- Focus on the Female Athlete Triad/RED-S

Why Differentiate?

- The unique needs of female athletes with an impairment have often received little attention
- What we know the evidence is in its infancy
 - Clinical standards of care
 - Diagnostic algorithms
- Involvement of female athletes with a disability is expanding rapidly
 - From the grassroots to elite

Participation Trends

Gender participation by proportion at the Summer Paralympic Games, 1996-2012

Participation Trends

Trends in female athlete participation in the Paralympic Games in comparison to the Olympic Games

Female Athlete Triad/RED-S

Female Athlete Triad (Triad) and Relative Energy Deficiency in Sport (RED-S)

The Female Athlete Triad (Triad)

- First defined by ACSM in 1992 (Yaeger, 1993)
- Updated diagnostic criteria and definition in 2007 (Nattiv, 2007)
- Relative Energy Deficiency in Sport (RED-S) (Mountjoy, 2014)

Female Athlete Triad (Triad) and Relative Energy Deficiency in Sport (RED-S)

Defined by the inter-relationship of three conditions:

- Low energy availability (with or without disordered eating)
- Menstrual dysfunction
- Low bone mineral density

(Nattiv, 2007)

Systematic Review of the Triad/RED-S and Athletes with an Impairment

Rationale:

 Currently, little available literature on the prevalence or impact of the three components of the triad in athletes w/ disability

__Method:

- Comprehensive lit search cross linking Triad/RED-S terms with <u>six</u> major impairment categories
- Search yielded **75** articles or book chapters; only **4** were original research papers on a component of the Triad and athletes with a disability

Search Results

	Energy availability (EA)*	Menstrual dysfunction (MD)+	Impaired bone health (BMD)≠
Spinal cord injury (SCI)	6 (3G, 3A)	4 (4G)	15 (13G, 2A)
Spina bifida (SB)	4 (4G)	0	4 (4G)
Central neurologic injury (CP/TBI)	5 (5G)	3 (3G)	11 (11G)
Amputee (AMP)	5 (5G)	0	2 (2G)
Short stature (achondroplasia) (SS)	3 (3G)	0	3 (3G)
Visual impairment/blind (VI)	6 (6G)	0	4 (4G)

Legend:

G=general population; A=athletes

Search Terms (sample):

*Low EA: energy expenditure, energy availability, disordered eating, eating disorder, dieting +Menstrual dysfunction: amenorrhea, menstrual function, menstrual irregularity ≠Impaired bone health: osteopenia, osteoporosis, bone health, bone mineral density, stress fractures

] Short stature or visual impairment

- Likely minimal variance in energy availability

] Short stature or visual impairment

- Likely minimal variance in energy availability

Spinal cord injury or spina bifida

 Those with altered weight-bearing status (wheelchair users) - reduced energy needs and reduced propensity towards low EA

] Short stature or visual impairment

- Likely minimal variance in energy availability

Spinal cord injury or spina bifida

 Those with altered weight-bearing status (wheelchair users) - reduced energy needs and reduced propensity towards low EA

Cerebral palsy or traumatic brain injury

Those who are wheelchair users may have reduced energy requirements;
dyskinetic CP may have increased energy expenditure due to spasticity

] Short stature or visual impairment

- Likely minimal variance in energy availability

Spinal cord injury or spina bifida

 Those with altered weight-bearing status (wheelchair users) - reduced energy needs and reduced propensity towards low EA

Cerebral palsy or traumatic brain injury

Those who are wheelchair users may have reduced energy requirements;
dyskinetic CP may have increased energy expenditure due to spasticity

] Amputees

Increased energy expenditure due to gait asymmetry

Disability Impacts Energy Needs

Key examples

- Amputees have higher energy expenditure (Gonzales 1974)
 - Unilateral BKA 25%
 - Bilateral BKA 41%
 - Unilateral AKA 60-70%
 - Bilateral AKA 3200%
- Athletes with SCI have lower energy expenditure during exercise (Price 2010)
 - 26-85% dependent on level of injury

Key Findings: Menstrual Dysfunction

] Acute spinal cord injury

 May result in temporary amenorrhea post-injury; resolves in average of 5 months (Bughi 2008)

Key Findings: Menstrual Dysfunction

] Acute spinal cord injury

 May result in temporary amenorrhea post-injury; resolves in average of 5 months (Bughi 2008)

Traumatic brain injury

 Alterations in the HPA axis can cause functional hypothalamic amenorrhea; severity of injury predictive of length of amenorrhea (Ripley 2008)

Key Findings: Menstrual Dysfunction

] Acute spinal cord injury

 May result in temporary amenorrhea post-injury; resolves in average of 5 months (Bughi 2008)

Traumatic brain injury

 Alterations in the HPA axis can cause functional hypothalamic amenorrhea; severity of injury predictive of length of amenorrhea (Ripley 2008)

] Others

No available literature on menstrual dysfunction in cases of SCI, SB, AMP, SS, or VI
– likely minimal differences

Key Findings: Low Bone Mineral Density

Spinal cord injury or spina bifida

- Severely reduced BMD as a result of decreased weightbearing loads – risk increases with duration of injury
- Fractures most commonly involve the distal femur or proximal tibia (Frotzler 2015)

Key Findings: Low Bone Mineral Density

Spinal cord injury or spina bifida

- Severely reduced BMD as a result of decreased weightbearing loads – risk increases with duration of injury
- Fractures most commonly involve the distal femur or proximal tibia (Frotzler 2015)

] Amputees

 Unilateral amputees show decreased BMD in the limb affected by amputation (Sherk 2008)

Key Findings: Low Bone Mineral Density

Spinal cord injury or spina bifida

- Severely reduced BMD as a result of decreased weightbearing loads – risk increases with duration of injury
- Fractures most commonly involve the distal femur or proximal tibia (Frotzler 2015)

] Amputees

 Unilateral amputees show decreased BMD in the limb affected by amputation (Sherk 2008)

] Others

 Affected athletes in high speed sports have much higher risk of injury due to reduced BMD

Disability Type	Energy Expenditure* #	Menstruation*	Bone Mineral Density*	
Spinal Cord Injury	Reduced (wheelchair users) or increased (ambulatory – due to gait inefficiency)	Minimal variance beginning approximately 5 months post-injury	Severely reduced in lower extremities (paraplegia, wheelchair users) or both upper/lower extremities (tetraplegia, wheelchair users)	
Spina Bifida	Reduced (wheelchair users) or increased (ambulatory – due to gait inefficiency)	Unknown	Reduced in lower extremities (wheelchair users)	
Central Neurologic Injury	Reduced (wheelchair users) or increased (ambulatory – due to gait inefficiency)	Menstrual dysfunction may be present in severe injuries	Reduced (wheelchair users, those with poor nutritional status and/or higher GMFCS [≠] score)	
Amputee	Increased due to asymmetry of gait	Unknown	Reduced in limb affected by amputation	
Short Stature	Minimal variance or increased (achondroplasia)	Unknown	No variance or reduced (achondroplasia)	
Visual Impairment	Minimal variance	Unknown	No variance or reduced in sedentary individuals	

Summary of Findings

- Female athletes with a disability are at disproportionate risk for the Triad/RED-S dependent on sport and disability type
-] Awareness is very low a concerning problem
- **Future research priorities should include:**
 - Assessment of the prevalence of the three Triad components in athletes with a disability
 - Assessment of knowledge of the Triad/RED-S in athletes with a disability
 - Characterization of energy needs in athletes with various disability types and various sport disciplines

Growing Collaborations

Growing Collaborations

THE FEMALE PARALYMPIC ATHLETE BETA

Home | Kitbag | Help | Badges

Female Athlete Health Interactive Learning Module https://www.olympicresources.com/Home/Welcome

References

- 1. Yeager, K.K., et al., The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc, 1993. 25(7): p. 775-7.
- 2. Nattiv, A., et al., American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc, 2007. 39(10): p. 1867-82.
- 3. Moutjoy, M et al., The IOC consensus statement: beyond the Female Athlete Triad Relative Energy Deficiency in Sport (RED-S). Br J Sports Med, 2014. 48: p. 491-497.
- 4. Gonzalez, E.G., P.J. Corcoran, and R.L. Reyes, Energy expenditure in below-knee amputees: correlation with stump length. Arch Phys Med Rehabil, 1974. 55(3): p. 111-9.
- 5. Price, M., Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med, 2010. 40(8): p. 681-96.
- 6. Bughi, S., et al., Amenorrhea, pregnancy, and pregnancy outcomes in women following spinal cord injury: a retrospective cross-sectional study. Endocr Pract, 2008. 14(4): p. 437-41.
- 7. Ripley, D.L., et al., The impact of female reproductive function on outcomes after traumatic brain injury. Arch Phys Med Rehabil, 2008. 89(6): p. 1090-6.
- Frotzler, A., et al., Long-bone fractures in persons with spinal cord injury. Spinal Cord, 2015. 53(9): p. 701 4.
- 9. Sherk, V.D., M.G. Bemben, and D.A. Bemben, BMD and bone geometry in transtibial and transfemoral amputees. J Bone Miner Res, 2008. 23(9): p. 1449-57.

Paralympic.org

Obrigado!

Photos ©: Getty Images