IMPROVING MOBILITY PERFORMANCE IN WHEELCHAIR BASKETBALL

MARCO HOOZEMANS
THOM VEEGER
MONIQUE BERGER
RIENK VAN DER SLIKKE
DIRKJAN VEEGER
ANNEMARIE DE WITTE
INTRODUCTION

Mobility performance in wheelchair basketball

Game performance

Mobility performance

Physical performance
Defining mobility performance

Mobility performance

Ability of performing wheelchair-athlete activities:
- standing still
- driving
- rotating
- braking
- blocking
INTRODUCTION

Quantifying mobility performance

Observation of wheelchair-athlete activities during games

Development of Wheelchair Mobility Performance (WMP) test

Validity, reliability and responsiveness of WMP-test

Monitor and optimize mobility performance
INTRODUCTION

Optimizing mobility performance

- Athlete characteristics
- Wheelchair characteristics
- Athlete-wheelchair interaction characteristics

Mobility performance
Which athlete, wheelchair and athlete-wheelchair interaction characteristics are the best predictors of wheelchair basketball mobility performance?
Study population

- N=60 wheelchair basketball players
- 44 men, 16 women
- Mean age 25 years (range 12-50 years)
- Active at first division or international level
- Classification: N=20 ≤2.5, N=40 ≥3
Outcome variable

- Performance (time in seconds) on the wheelchair mobility performance test (WMP test), consisting of 15 tasks.
METHODS

Predictor variables

Athlete characteristics (A)
- Age
- Experience
- Classification
- Body and wheelchair weight
- Maximal isometric force
- Forearm length
- Upper arm length

Wheelchair characteristics (W)
- Wheel diameter
- Hand rim diameter
- Ratio hand rim / wheel

Athlete-wheelchair interaction characteristics (I)
Statistical analyses

• Forward stepwise linear regression analyses, to determine the best predictors (athlete characteristics, wheelchair characteristics, athlete-wheelchair interaction characteristics, all characteristics) of WMP test end-time.
Athlete characteristics

<table>
<thead>
<tr>
<th></th>
<th>Regression coefficient</th>
<th>Standardized coefficient</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>107.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximal isometric force (N)</td>
<td>-0.02</td>
<td>-0.36</td>
<td>[-0.04, -0.00]</td>
</tr>
<tr>
<td>trunk length (cm)</td>
<td>-0.39</td>
<td>-0.30</td>
<td>[-0.77, -0.00]</td>
</tr>
</tbody>
</table>

High correlations (r>0.60) between:
- Maximal isometric force: -
- Trunk length: body and wheelchair weight (r=0.61), lower leg length (r=0.77)
Wheelchair characteristics

<table>
<thead>
<tr>
<th></th>
<th>Regression coefficient</th>
<th>Standardized coefficient</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>162.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wheel diameter (cm)</td>
<td>-1.46</td>
<td>-0.56</td>
<td>[-2.05, -0.86]</td>
</tr>
<tr>
<td>horizontal distance footrest – rear axis (cm)</td>
<td>0.28</td>
<td>0.28</td>
<td>[0.05, 0.51]</td>
</tr>
</tbody>
</table>

High correlations ($r>0.60$) between:
- Wheel diameter: hand rim diameter ($r=0.87$), rear seat height ($r=0.65$)
- Horizontal distance foot rest – rear axis: -
Athlete-wheelchair interaction characteristics

<table>
<thead>
<tr>
<th></th>
<th>Regression coefficient</th>
<th>Standardized coefficient</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>111.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical distance shoulder-rear axis (cm)</td>
<td>-0.44</td>
<td>-0.51</td>
<td>[-0.65, -0.22]</td>
</tr>
</tbody>
</table>

High correlations ($r>0.60$) between:
- Vertical distance shoulder – rear axis: elbow angle ($r=0.71$)
RESULTS

All characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Regression coefficient</th>
<th>Standardized coefficient</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>116.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical distance shoulder - rear axis (cm)</td>
<td>-0.55</td>
<td>-0.66</td>
<td>[-0.77, -0.33]</td>
</tr>
<tr>
<td>vertical distance front seat height - foot rest (cm)</td>
<td>1.00</td>
<td>0.58</td>
<td>[0.53, 1.47]</td>
</tr>
<tr>
<td>maximal isometric force (N)</td>
<td>-0.02</td>
<td>-0.35</td>
<td>[-0.03, -0.01]</td>
</tr>
<tr>
<td>camber angle (degrees)</td>
<td>-1.67</td>
<td>-0.28</td>
<td>[-3.13, -0.21]</td>
</tr>
</tbody>
</table>
High correlations (r>0.60) between:
- Vertical distance shoulder – rear axis:
 - body and wheelchair weight (r=0.67)
 - lower leg length (0.67)
 - trunk length (r=0.73)
 - wheel diameter (r=0.71)
 - hand rim diameter (r=0.63)
 - rear seat height (r=0.82)
 - front seat height (r=0.64)
 - elbow angle (r=0.71)
- Vertical distance front seat height – foot rest: -
- Maximal isometric force:
 - wheel diameter (r=0.62)
- Camber angle: -
CONCLUDING REMARKS

• Results are an exploratory (statistical) analyses of characteristics to focus on for improvement of mobility performance by coaches and (bio)mechanics.

• Modifiable height characteristics and physical capacity seem to be important predictors of mobility performance.

• WMP test will be used to investigate modifiable wheelchair configurations in experimental setting.
CONCLUDING REMARKS

- Results are an exploratory (statistical) analyses of characteristics to focus on for improvement of mobility performance by coaches and (bio)mechanics.

- Modifiable height characteristics and physical capacity seem to be important predictors of mobility performance.

- WMP test will be used to investigate modifiable wheelchair configurations in experimental setting.

Thank you for your attention!