Investigating the Clinical Effects of Performance-Focused Swimming Training for People with Cerebral Palsy: a Proof of Concept Study

Iain Dutia¹; Dr Mark Connick¹; Dr Emma Beckman¹; Dr Leanne Johnston²; Dr Sean Tweedy¹

¹The University of Queensland, School of Human Movement and Nutrition Sciences, Brisbane, Australia ²The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Australia

Supported by the Queensland Academy of Sport

Background: Cerebral Palsy and Physical Activity

- People with CP have physical impairments → ↓ ADLs
 → ↓ Participation
- Low levels of physical activity $\rightarrow \psi$ Health status
- Recent research focus on moderate doses of physical activity
- Generally, it is recognised that moderate doses of physical activity can elicit favourable clinical outcomes

Cerebral Palsy and Performance-Focused Sports Training

- What about the clinical effect of physical activity which is designed to improve sports performance?
- 'Performance-Focused' training is typically associated with greater doses
- Paralympic athletes anecdotally attribute excellent clinical outcomes to their training

'Hard training means 9 sessions per week, 2 hours per session of intense training. I haven't always been able to do that – it took me years to reach that level...**if I didn't have swimming I'd probably be in a wheelchair, overweight and very fragile'.** Jaqueline Freney, 2014

Therapeutic Value of Sport?

- Can these stories be substantiated with scientific evidence?
- Can training loads associated with sports training positively affect health and the impairments themselves?

• Aim:

Evaluate the relationship between performancefocused swimming training and the clinical outcomes of Health-Related QoL and Gross Motor Function

Create change

Study Design

- Single Subject Research Design
- 1 Participant
- 3 Phases
 - A^1 = Baseline (15 weeks)
 - B = Training (30 weeks)
 - $A^2 = Off$ -season (15 weeks)

Intervention

A ¹		В		A ²
Baseline	Intervention (Introductory training)		Intervention (Performance- focused training)	Off-season
15 weeks	15 weeks		15 weeks	15 weeks

- First Part of B Phase introduction to sport
 - Low-moderate dose
 - Aerobic, Strength, Flexibility, Neuromotor Training
- Second Part of B Phase aims to optimise swimming performance
 - Higher dose (frequency, intensity, duration)
 - Intentional reduction leading into competition

Participant

- 21 years old
- Ataxic Cerebral Palsy
- GMFCS II, S7
- Insufficiently active for health
- Water safe
- Medically, intellectually able to train

Outcome Measures

- Health-Related QoL
 - SF-36 Physical Function Subscale
- Gross Motor Function Measure-66-Item Set
 - GMFM-66-IS
- Repeated measures: 5 data points in baseline, 10 in training, 5 in offseason
- Analysis: Data is plotted, visual analysis of central tendency and percentage non-overlapping data (Parker et al. 2007)

Results

- Training load well tolerated
- Positive changes in swim performance seen: 25m freestyle swim time reduced from 82s to 49s.
- Full description in presentation this afternoon: Angelo Macaro

Results: Gross Motor Function

Training Baseline **Off-Season** Score 10 11 12 13 14 15 Timepoint Median **PND** N/A **70%** = moderate effect 0%

GMFM-66-IS

Results: SF-36 Physical Functioning Subscale

SF-36: Physical Functioning Subscale

Conclusions

- A promising start at a proof-of-concept level: acceptable study design, outcome measures and intervention structure
- Functional relationship may exist
- Future research is required continue longitudinal monitoring, multiple baseline design across 3 participants
- Implications for Neurological Rehab sport as a therapy

Acknowledgements

- Queensland Academy of Sport
- Swimming Australia
- Australian Paralympic Committee
- International Paralympic Commitee

- Advisory Team
 - Dr Sean Tweedy
 - Dr Mark Connick
 - Dr Emma Beckman
 - Dr Leanne Johnston

