SALIVARY BIOMARKERS AND TRAINING LOAD DURING TRAINING AND MAJOR COMPETITION IN PARALYMPIC SWIMMERS

Ciara Sinnott-O'Connor

Supervisor: Dr Giles Warrington

Secondary Supervisor: Dr Tom Comyns

Background and Rationale

- A common misconception in sport is the belief that to improve performance one must increase training (Bishop et al., 2008)
- Mismanagement of training load is not always overload and can be insufficient load (Gabbett, 2016)
- Most valuable output of accurate athlete load monitoring is the comprehensive understanding of the **individual** tolerance to training and competition (Coutts et al., 2004)

Background and Rationale

- Salivary profiling is non-invasive, easily accessible and can be measured quickly in lab or field settings
- Weekly monitoring allows for trends and patterns to develop
- Research has shown immune and stress salivary biomarkers to respond to increases in training and competition stress (Papacosta and Nassis, 2011)
- □ Immunoglobulin A (IgA) Immune function
- Alpha-Amylase (AA) response of sympathetic nervous system to stressors
- □ Cortisol Stress response

Research Question

- Should salivary data be included in athlete load monitoring for Paralympic athletes?
- How sensitive are salivary biomarkers to changes in training load?
- Would performance in major competition increase stress response as measured by salivary biomarkers?

Methods

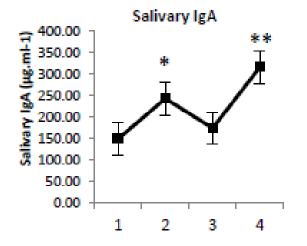
- □ 4 swimmers representing Ireland at 2016 Paralympic Games
- Swimmer classes S5, S6, S8 and S9
- 4 training phases baseline training, intensified training, taper and competition
- Bi-weekly samples during training and daily samples during 10-day competition

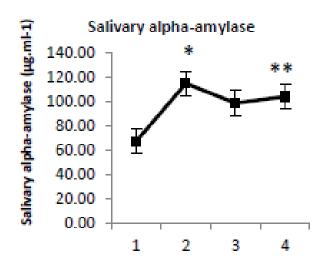
Methods

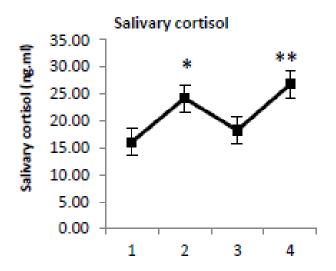
- □ Training load quantified using session-RPE at all training sessions
- Session-RPE was previously validated in this group
- Training diary to record all training sessions
- Saliva samples analysed for IgA, AA and cortisol using IPRO point of care

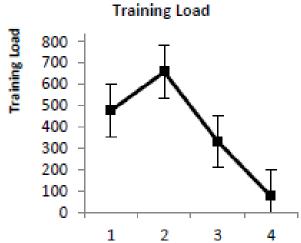
Salivary collection — IPRO

- □ Sampling collection time on average 20-30s
- Volume indicator colour change when complete
- Instant results when analysed (10-15min)


Results


- Intense training phase saw 38% increase in TL
 compared to baseline training
- Concurrent significant increase in slgA, AA and cortisol
- During taper phase decrease in TL correlated with decrease in three salivary biomarkers but still above baseline levels





Results

- Despite further reduction in TL during competition significant increases seen in all three salivary biomarkers
- Levels were significantly higher than baseline levels and intense training phase levels
- Psychological stress response having physiological impact
- Within athlete analysis showed highly significant changes supporting sensitivity of salivary measures

		Salivary IgA		Salivary AA		Salivary Cortisol	
Fixed explanatory variables							
Parameter		Estimate	S. Error	Estimate	S. Error	Estimate	S. Error
Constant (a)		148.2	18.75	69.13	18.09	16.29	1.64
Intensified Training (△a)		94.98	27.67	45.88	19.07	7.92	2.17
Taper (△a)		25.58	31.62	29.73	21.79	1.97	2.48
Competition (△a)		168.7	24.19	35.87	16.67	10.49	1.89
Random Variables				•		-	•
Level 2 (between athletes)				•		-	-
Variance		Estimate	S. Error	Estimate	S. Error	Estimate	S. Error
		220.3	430.9	745.63	653.91	3.47	4.14
Level 1 (within athletes)					•	•	•
Variance		Estimate	S. Error	Estimate	S. Error	Estimate	S. Error
		11253.38	1497.1	5341.12	710.64	69.08	9.19

Practical applications

- Results from this study has demonstrated sensitivity of salivary
 biomarkers as one tool in athlete monitoring
- quantified impact of stress response during major competition in Paralympic swimmers
- Despite training load decreasing, coaches and support staff must
 consider the psychophysiological stress response during competition
- Recovery protocols may require adjusting as competition progresses
 to ensure continued optimal performance

THANK YOU

 $\underline{\mathsf{csoconnor}@\mathsf{instituteofsport.ie}}$

@ciara__soc

