

Classification Research Partner

How the cognitive-motor dual-task paradigm can contribute to the development of evidence-based classification systems for athletes with intellectual impairments

Debbie Van Biesen, PhD Faculty of Kinesiology & Rehabilitation Sciences KU Leuven, Belgium VISTA, Toronto, Sept 2017

Evidence-based classification

Impact of cognition on sport performance

Other II-sports on the Paralympic program

Not included: 100m sprint

Cognitive-motor dual-task paradigm

Never attack a problem without also presenting a solution.

— Jim Rohn —

AZQUOTES

Multitasking

"The ability to do several things at the same time"

Source: Merriam-Webster's Learner's dictionary

Dual-tasking

"The simultaneous performance of two tasks with distinct goals"

McIsaac, Lamberg, & Muratori, 2015

Sport is a multitasking environment

KU LEUVEN

ELITE ATHLETES ARE ABLE TO:

- \Rightarrow Successfully combine the motor and cognitive demands of the sport to optimize performance
- \Rightarrow II-athletes: limited resources available => DUAL-TASK COSTS!

Motor task - One leg stance eyes open

- Static balance
- On the balance beam
- 60 seconds (6 x 10 seconds)

Cognitive task - Multiple object tracking

Multiple Object Tracking (MOT)

- Tracking targets (1-4)
- Distractors (1-4)
- Velocity (2°/sec 10°/sec)
- 10 sec/trial, 15 trials, difficulty index↑

Dual-task pilot study - sample

II-athletes

- INAS Global Games (Ecuador)
- n = 103 (33 ♀, 70♂)
- IQ = 61 ± 9
- Age = 22 ± 2.4

Comparison (non-II)

- KU Leuven (Belgium)
- n = 103 (33 ♀, 70♂)
- Matched for age, gender, sport, training volume

ability of athletes with and without intellectual impairment. Journal of Sport Sciences.

Results DUAL-TASK costs

Conclusion

- Cognitive-motor dual-task paradigm is an ecologically valid way to investigate the relation between cognitive function and motor performance of elite athletes with II
- Poor balance control in people with II => (impaired) cognition related to balance control
- Athletes with II have difficulties to successfully combine cog and motor task demands
- Higher DT costs for II-athletes compared to non-II athletes, higher DT costs for balance compared to cog task
- ⇒ Cognitive-motor dual-task paradigm to be considered a potential method to demonstrate the impact of II on performance, even in sports with relatively low cognitive load.

Implications for future research

- Assessment of cognitive function
 - Difficulty level adjusted to participant (tailored)
 - Various cognitive factors relevant to sport (reaction time, memory, pattern recognition, ...)
 - Executive functions
- Assessment of postural control
 - Posturography static & dynamic
 - Balance movement & timing action lab
- Assessment of KPI's (sport specific)
- Control samples (4)
 - Il vs non-II/athletes vs non-sportive controls
- Design
 - Training/RCT
 - Field test vs lab conditions

Classification Research Partner

KU LEUVEN

Thank you

Contact:

- 🔀 debbie.vanbiesen@kuleuven.be
- 🔽 @II_Leuven
- @DebbieVanBiesen