

SPEED PROFILES IN WHEELCHAIR COURT SPORTS; COMPARISON OF TWO METHODS FOR MEASURING WHEELCHAIR MOBILITY PERFORMANCE

Rienk van der Slikke, Barry Mason, Monique Berger, Vicky Tolfrey

Wheelchair court team sports

Wheelchair court team sports

- Rugby (Quad rugby)
- Tennis
- Basketball
- Hockey
- Field position
- Wheelchair mobility performance
 - Wheelchair kinematics

Speed & rotations

- Able bodied sports
 - Speed zones: maintain speed \rightarrow "power in"
 - Rotations partly within the body (trunk)
- Wheelchair sports
 - Maintain speed → "cruising"
 - Changes in speed more important (acceleration)
 - Limited rotation within body \rightarrow wheelchair rotations

Loughborough 🧕

University

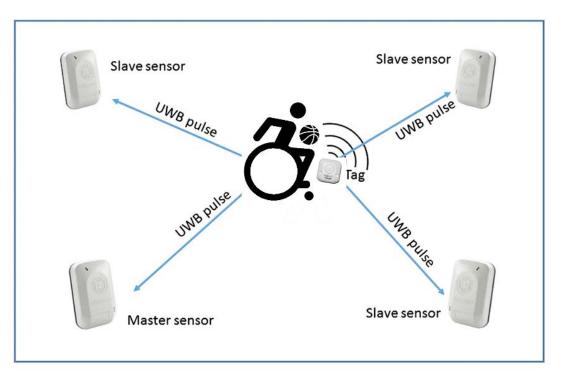
TU DELFT Sports Engineerin

Delft

THE

Rotations (of the wheelchair) more important

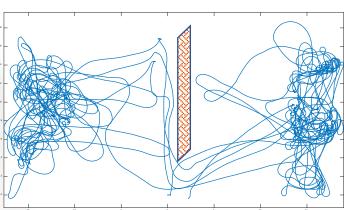
Indoor Tracking System (ITS)


- Ultra wide band technology
 - Ubisense
 - Catapult
- System
 - 4-6 sensors fixed around the court
 - Single tag on each player (wheelchair)
 - Frequency bandwidth shared (~6Hz)
- Outcomes
 - Position (on the field), heatmaps
 - Speed & displacement

Journal of Sports Sciences, 2014 http://dx.doi.org/10.1080/02640414.2014.910608 Routledge Taylor & Francis Croup

The validity and reliability of a novel indoor player tracking system for use within wheelchair court sports

JAMES RHODES¹, BARRY MASON¹, BERTRAND PERRAT², MARTIN SMITH² & VICTORIA GOOSEY-TOLFREY¹


¹Peter Harrison Centre for Disability Sport, School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UK and ²Faculty of Engineering, University of Nottingham, Nottingham, UK

Wheelchair Mobility Performance Monitor (WMPM)

- Inertial sensors
 - Wheels & frame
 - No global reference
- Outcomes
 - Forward
 - Displacement, speed & acceleration, push characteristics
 - Rotational
 - Rotation, rotational speed & rotational acceleration

Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration

R.M.A van der Slikke ^{a,b,*}, M.A.M. Berger ^a, D.J.J. Bregman ^b, A.H. Lagerberg ^a, H.E.J. Veeger ^{b,c}

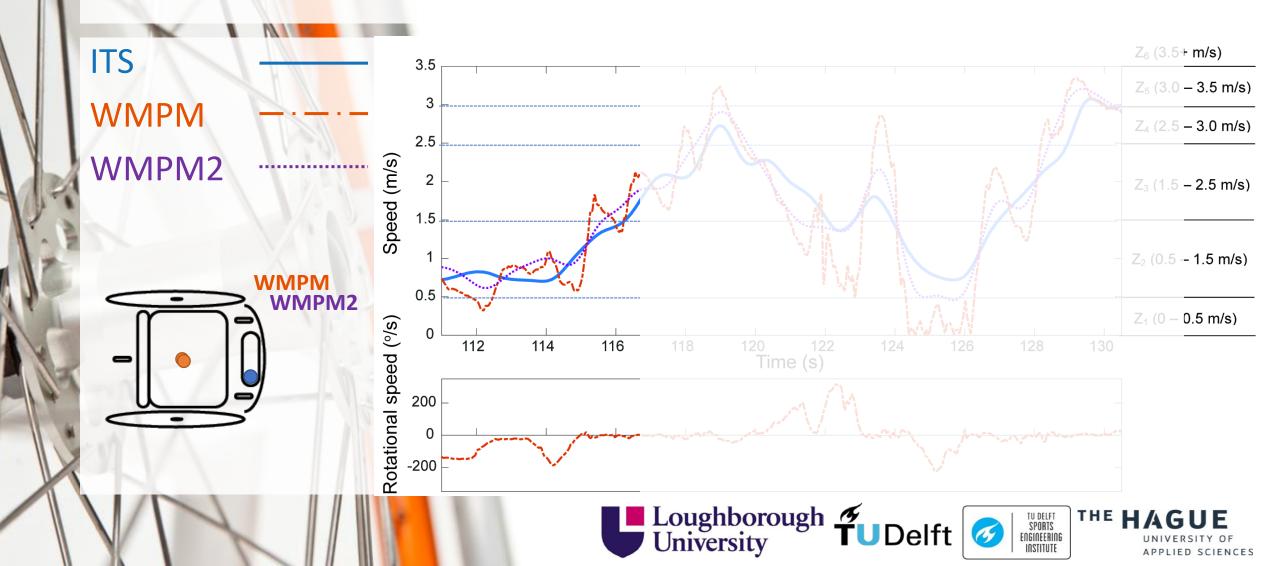
Human Kinetic Technology, The Hague University of Applied Sciences, Johanna Westerdijkplein 75, 2521EN The Hague. The Netherlands ^b Department of Biomechanical Engineering, Delft University of Technology, The Netherlands Research Institute MOVE VII Amsterdam The Netherlan

CrossMark

APPLIED SCIENCES

Measurements

- 6x 10 minute game measured
- 5 elite level wheelchair basketball players
- Comparison
 - Distance
 - Speed
 - Average
 - RMSE
 - Zones



R _{WMPM}

R _{ITS}

Results example plot

Results

	M	Inertial sensors WMPM	difference	Indoor Tracking System	difference	Inertial sensors WMPM2
Distance per ~10 min. (m)		837.8	-2.6% (±3.2%)	882.3	0.1% (±3.3%)	883.4
Speed (m/s)	average	1.30	-2.6%	1.37	0.1%	1.38
	RMSE		0.41		0.33	
	0 - 0.5	22.4%	13.7	8.7%	5.7	14.4%
Speed Zone (m/s)	0.5 - 1.5	37.9%	-15.7	53.6%	-9.0	44.6%
	1.5 - 2.5	29.3%	-0.1	29.4%	2.0	31.3%
	2.5 - 3.0	6.6%	1.0	5.5%	0.9	6.4%
Cin X	3.0 - 3.5	2.8%	0.7	2.1%	0.4	2.5%
	3.5+	1.0%	0.3	0.7%	0.0	0.7%
IN		Loughborough 🖉 👝 🚛				

UNIVERSITY OF APPLIED SCIENCES

Conclusion

- Comparison
 - For speeds above average (1.5 m/s) similar results
 - At low speeds differences due to reference point
 - In ITS more time assigned to average speed zone due to filtering
- Future
 - Recalculate for reference point if needed
 - Combine ITS with a single IMU for best results
 - Proved feasible in the research
 - Use sensor fusion techniques

Thank you for your attention!

Rienk van der Slikke

Human Kinetic Technology

E-mail: <u>R.M.A.vanderSlikke@hhs.nl</u>

www.researchgate.net/profile/Rienk_Van_der_Slikke2

